skip to main content


Search for: All records

Creators/Authors contains: "Farine, ed., Damien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding how climate change impacts trailing‐edge populations requires information about how abiotic and biotic factors limit their distributions. Theory indicates that socially mediated Allee effects can limit species distributions by suppressing growth rates of peripheral populations when social information is scarce.

    The goal of our research was to determine if socially mediated Allee effects limit the distribution of Canada warblerCardellina canadensisat the trailing‐edge of the geographic range.

    Using 4 years of observational data from 71 sites and experimental data at 10 sites, we tested two predictions of the socially mediated range limitation hypothesis: (a) local growth rates should be positively correlated with local density and (b) the addition of social cues immediately outside the trailing‐edge range boundary would result in colonization of formerly unoccupied habitat and increased growth rates. During the third breeding season, social cues were experimentally added at 10 formerly unoccupied sites within and beyond the species’ local range margin to determine if the addition of social information could increase density and effectively expand the species’ range.

    No experimental sites were colonized after adding social cues and no evidence of Allee effects was found. Rather, temperature, precipitation and negative density dependence strongly influenced population growth rates.

    Although theoretical models indicate that the presence of socially mediated Allee effects at species range boundaries could increase the rate of climate‐induced range shifts and local extinctions, empirical results from the first test of this hypothesis suggest that Allee effects play a minimal role in limiting species’ distributions.

     
    more » « less
  2. Abstract

    How social development in early‐life affects fitness remains poorly understood.

    Though there is growing evidence that early‐life relationships can affect fitness, little research has investigated how social positions develop or whether there are particularly important periods for social position development in an animal's life history. In long‐lived species in particular, understanding the lasting consequences of early‐life social environments requires detailed, long‐term datasets.

    Here we used a 25‐year dataset to test whether social positions held during early development predicted adult fitness. Specifically, we quantified social position using three social network metrics: degree, strength and betweenness. We determined the social position of each individual in three types of networks during each of three stages of ontogeny to test whether they predict annual reproductive success (ARS) or longevity among adult female spotted hyenasCrocuta crocuta.

    The social positions occupied by juvenile hyenas did predict their fitness, but the effects of social position on fitness measures differed between stages of early development. Network metrics when individuals were young adults better predicted ARS, but network metrics for younger animals, particularly when youngsters were confined to the communal den, better predicted longevity than did metrics assessed during other stages of development.

    Our study shows how multiple types of social bonds formed during multiple stages of social development predict lifetime fitness outcomes. We suggest that social bonds formed during specific phases of development may be more important than others when considering fitness outcomes.

     
    more » « less
  3. Abstract

    The spatial organization of a population can influence the spread of information, behaviour and pathogens. Group territory size and territory overlap and components of spatial organization, provide key information as these metrics may be indicators of habitat quality, resource dispersion, contact rates and environmental risk (e.g. indirectly transmitted pathogens). Furthermore, sociality and behaviour can also shape space use, and subsequently, how space use and habitat quality together impact demography.

    Our study aims to identify factors shaping the spatial organization of wildlife populations and assess the impact of epizootics on space use. We further aim to explore the mechanisms by which disease perturbations could cause changes in spatial organization.

    Here we assessed the seasonal spatial organization of Serengeti lions and Yellowstone wolves at the group level. We use network analysis to describe spatial organization and connectivity of social groups. We then examine the factors predicting mean territory size and mean territory overlap for each population using generalized additive models.

    We demonstrate that lions and wolves were similar in that group‐level factors, such as number of groups and shaped spatial organization more than population‐level factors, such as population density. Factors shaping territory size were slightly different than factors shaping territory overlap; for example, wolf pack size was an important predictor of territory overlap, but not territory size. Lion spatial networks were more highly connected, while wolf spatial networks varied seasonally. We found that resource dispersion may be more important for driving territory size and overlap for wolves than for lions. Additionally, canine distemper epizootics may have altered lion spatial organization, highlighting the importance of including infectious disease epizootics in studies of behavioural and movement ecology.

    We provide insight about when we might expect to observe the impacts of resource dispersion, disease perturbations, and other ecological factors on spatial organization. Our work highlights the importance of monitoring and managing social carnivore populations at the group level. Future research should elucidate the complex relationships between demographics, social and spatial structure, abiotic and biotic conditions and pathogen infections.

     
    more » « less